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Noise Robust Frequency-Domain Adaptive Blind
Multichannel Identification With �p-Norm Constraint

Hongsen He , Member, IEEE, Jingdong Chen , Senior Member, IEEE, Jacob Benesty , and Tao Yang

Abstract—Blind multichannel identification is a challeng-
ing problem in many domains. The normalized multichannel
frequency-domain least-mean-square (NMCFLMS) algorithm was
developed to blindly identify a single-input multiple-output acous-
tic system, which can yield good performance in noise-free en-
vironments. However, the robustness of this algorithm to noise
has been shown to be problematic. One way to improve the ro-
bustness is by applying a constraint on the spectral flatness of
the channel impulse responses, which led to the development of
the so-called robust normalized multichannel frequency-domain
least-mean-square (RNMCFLMS) algorithm. This spectral flat-
ness constraint, however, may not be always proper or reasonable
in realistic acoustic environments. In this paper, we develop an
�p-norm constraint based robust normalized multichannel
frequency-domain least-mean-square (�p-RNMCFLMS) algo-
rithm. The �p-norm constraint is introduced into the NMCFLMS
algorithm to control the effect of different �p-norm penalties on
the adaptive filter for the impulse responses with different degrees
of sparseness. Numerical and realistic experiments justify the ef-
fectiveness of the proposed �p-RNMCFLMS algorithm.

Index Terms—Blind multichannel identification, frequency-
domain adaptive filtering, �p-norm penalty, sparsity, SIMO
system, robustness.

I. INTRODUCTION

B LIND multichannel identification (BMCI), which aims at
estimating the channel impulse responses of an unknown
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system based only on the output signals, plays an important
role in many application domains, such as multimedia signal
processing [1], geophysical exploration [2], communications
[3], etc. Over the last few decades, the BMCI problem has
drawn a significant amount of research attention and many al-
gorithms have been developed, such as the subspace algorithms
[4]–[6], cross-relation algorithms [7], [8], sub-channel match-
ing methods [8], [9], higher-order statistics approaches [10],
[11], maximum likelihood algorithms [12]–[14], error-property
based identification methods [15], [16], and the normalized mul-
tichannel frequency-domain least-mean-square (NMCFLMS)
algorithm [17].

Among those algorithms, NMCFLMS is especially attrac-
tive for real-world applications since it exploits the fast Fourier
transform (FFT) to adaptively identify the impulse responses of
a single-input multiple-output (SIMO) system in the frequency
domain and, therefore, is computationally very efficient. How-
ever, this algorithm was found not to be robust to additive noise.
An improved version of the NMCFLMS algorithm, called robust
NMCFLMS (RNMCFLMS), was then developed [18], [19],
which introduces a logarithmic penalty on the spectra of the
channel impulse responses into the NMCFLMS algorithm to
make it immune to additive noise. The logarithmic function as a
penalty term is effective to promote the flatness of the spectra of
the sparse impulse responses. In most of practical acoustic envi-
ronments, however, the spectra of the acoustic channel impulse
responses are not necessarily flat and, as a result, the robustness
of the RNMCFLMS algorithm to noise is far from being sat-
isfactory even though it is better than that of the NMCFLMS
algorithm.

In this study, we propose an �p -norm based noise robust nor-
malized multichannel frequency-domain least-mean-square (�p -
RNMCFLMS) algorithm. Unlike the RNMCFLMS algorithm
that uses a logarithmic function as the penalty on the spectra
of the acoustic channel impulse responses, the presented al-
gorithm employs the �p -norm as the penalty term in the cost
function of the multichannel frequency-domain adaptive filter.
The update equations of the frequency-domain adaptive filter are
rigorously derived upon the basis of Newton’s method. Further-
more, we will also investigate how different �p -norm penalties
affect the performance of the proposed adaptive filter in acous-
tic environments with different degrees of reverberation, which
affects the level of sparsity of the acoustic channel impulse re-
sponses. The effect of different �p -norm penalties on BMCI will
be verified through numerical simulations as well as realistic
experiments.
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The rest of this paper is organized as follows. In Section II, we
formulate the basic problem and briefly review the existing so-
lutions. Section III first derives the �p -RNMCFLMS algorithm,
then analyzes the effect of different norm penalties on the opti-
mization of the frequency-domain adaptive filter. In Section IV,
we examine the convergence behavior of the �p -RNMCFLMS
algorithm by simulations. Section V evaluates the effectiveness
of the �p -RNMCFLMS algorithm through experiments in realis-
tic acoustic environments. Finally, some conclusions are drawn
in Section VI.

II. PROBLEM FORMULATION AND THE EXISTING SOLUTIONS

A. Notation

For ease of reading, we first give the notation used in this pa-
per. Lowercase and uppercase bold letters denote, respectively,
time-domain vectors and matrices. Vectors and matrices in the
frequency domain are represented, respectively, by underlined
lowercase bold italic and uppercase calligraphic letters. Some
illustrative examples are given below:

x : vector in the time domain (bold, lowercase),

X : matrix in the time domain (bold, uppercase),

xxx : vector in the frequency domain (bold, italic,

underlined, lowercase),

XXX : matrix in the frequency domain (calligraphic,

bold, uppercase).

To connect a time-domain vector with its frequency-domain
counterpart, we define FFFL as the Fourier matrix of size L × L,
whose (p, q)th element is

(FFFL )p,q = e−j2π (p−1)(q−1)/L , p, q = 1, 2, . . . , L, (1)

with j being the imaginary unit and j2 = −1. The inverse of
FFFL is denoted FFF−1

L . In implementation, the operators FFFL and
FFF−1

L are calculated with FFT. The operators (·)T and (·)H stand
for the transpose and Hermitian transpose of a vector or matrix,
respectively, (·)∗ and ∇ denote the complex conjugate and gra-
dient operator, respectively, ∗ stands for linear convolution, and
� denotes element-by-element multiplication of two vectors.

B. Problem Formulation

Assume that an acoustic SIMO system is composed of a sound
source and M microphones. The sound signal captured by the
ith (i = 1, 2, . . . ,M ) microphone is then written as

xi(n) = s(n) ∗ hi(n) + vi(n), (2)

where s(n) is the source signal, hi(n) is the channel impulse
response between the sound source and the ith microphone,
which is typically modeled with a finite-impulse-response (FIR)
filter, and vi(n) is the additive noise at the ith microphone. It is
assumed that all signals are zero mean. If we neglect the noise
term in (2), the following relation can be obtained for any pair

of microphone signals:

xi(n) ∗ hj (n) = s(n) ∗ hi(n) ∗ hj (n)

= xj (n) ∗ hi(n), i, j = 1, 2, . . . ,M, i �= j,
(3)

which can be expressed in a matrix-vector form as

xxxT
i (n)hhhj (n) − xxxT

j (n)hhhi(n) = 0, (4)

where

hhhi(n) = [hi,0(n) hi,1(n) · · · hi,L−1(n)]T i = 1, 2, . . . ,M
(5)

are the impulse response vectors of length L, and

xxxi(n) = [xi(n) xi(n − 1) · · · xi(n − L + 1)]T (6)

is the convolved signal vector at the ith sensor.
When noise is present and/or the estimate of the impulse

responses deviates from the true value, the right-hand side of
(4) is no longer zero and an a priori error signal between the ith
and jth channels is produced as

eij (n) = xxxT
i (n)̂hhhj (n) − xxxT

j (n)̂hhhi(n), (7)

where ̂hhhi(n) is an estimate of hhhi(n) at time n. This error signal
can then be used to define a cost function (with some appropriate
constraints) that should be minimized to find an optimal estimate
of the impulse responses.

C. Existing Solutions

The NMCFLMS algorithm employs the sum of the squared
instantaneous errors between different channels to define the
cost function in the frequency domain [17]. Using the mth block
of the error signal eij (n), i.e.,

eeeij (m) = [eij (mL) eij (mL + 1) · · · eij (mL + L − 1)]T ,
(8)

the (frequency-domain) cost function of the NMCFLMS algo-
rithm is then defined as

JF(m) =
M −1
∑

i=1

M
∑

j=i+1

eeeH
ij (m)eeeij (m), (9)

where

eeeij (m) = FFFLeeeij (m)

= GGG
[

DDDi(m)WWŴhhhj (m) −DDDj (m)WWŴhhhi(m)
]

(10)

=
[

eij,0(m) eij,1(m) · · · eij,L−1(m)
]T

,

GGG = FFFL

[

OOOL IIIL
]FFF−1

2L , (11)

DDDi(m) = diag [FFF2Lxxxi(m)] , (12)

xxxi(m) =
[

xi(mL − L) xi(mL − L + 1)

· · · xi(mL + L − 1)
]T

, (13)

WWW = FFF2L

[

IIIL OOOL

]T FFF−1
L , (14)
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̂hhhj (m) = FFFL
̂hhhj (m)

=
[

̂hj,0(m) ̂hj,1(m) · · · ̂hj,L−1(m)
]T

, (15)

OOOL is the null matrix of size L × L, IIIL is the identity matrix
of size L × L, and diag[·] denotes a diagonal matrix with indi-
cated vector along the diagonal. According to Newton’s iteration
method, the update equations of the NMCFLMS algorithm are
then derived as [17]

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μfPPP−1

k (m)
M
∑

i=1

DDD∗
i (m)eee01

ik (m),

k = 1, 2, . . . ,M, (16)

where μf is the step size, and

̂hhh
10
k (m) = FFF2L

̂hhh
10
k (m), (17)

̂hhh
10
k (m) =

[

̂hhh
T

k (m) 000
]T

, (18)

PPPk (m) =
M
∑

i=1,i �=k

DDD∗
i (m)DDDi(m), (19)

eee01
ik (m) = FFF2L

[

000 eeeT
ik (m)

]T
, (20)

and 000 is the null matrix of size 1 × L.
The NMCFLMS algorithm can achieve good estimation per-

formance in very high signal-to-noise-ratio (SNR) environ-
ments. However, the performance of this algorithm deteriorates
significantly in low SNR cases. To cope with this problem, the
RNMCFLMS algorithm was proposed [18], [19], which intro-
duces a logarithmic penalty on the fullband spectral energy into
the NMCFLMS algorithm. The corresponding cost function is
defined as

JR(m) = JF(m) − ρ(m)
M
∑

i=1

L−1
∑

j=0

log
(

∣

∣̂hi,j (m)
∣

∣

2
)

, (21)

where ρ(m) is a Lagrange multiplier and the second term on the
right-hand side of the equation is the spectral penalty function on
the acoustic channel impulse responses. Based on NMCFLMS,
the update equations of the RNMCFLMS algorithm are as fol-
lows [18], [19]:

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μfPPP−1

k (m)
M
∑

i=1

DDD∗
i (m)eee01

ik (m)

+ μfρ(m)∇J 10
k (m),

k = 1, 2, . . . , M, (22)

where ∇J 10
k (m) is the gradient of the spectral penalty function

with respect to the filter coefficient vector. The spectral con-
straint introduced by the RNMCFLMS algorithm ensures the
spectral flatness of the estimated channel impulse responses in
the presence of noise [18], [19]. Thus, the RNMCFLMS algo-
rithm is much more immune to noise than the NMCFLMS algo-
rithm, particularly in the scenario where the impulse responses
are impulse like and their spectra are flat.

However, if the spectra of the impulse responses are not flat,
which is often true in reverberant acoustic environments, the per-
formance of the RNMCFLMS algorithm is still very sensitive to
noise. Unlike the NMCFLMS algorithm, the update equations
of RNMCFLMS are derived via Newton’s method, but through a
heuristic manner, which leads to some difficulty in analyzing its
performance with mathematical rigor. In this paper, we develop
a noise robust frequency-domain blind multichannel identifi-
cation algorithm based on an �p -norm constraint. According to
the proposed cost function, we give a detailed deduction process
of the frequency-domain adaptive filter with Newton’s method.
We will investigate the effect of different sparse-level penal-
ties on the identification of the acoustic channels in different
reverberation conditions.

III. NOISE ROBUST FREQUENCY-DOMAIN ADAPTIVE BLIND

MULTICHANNEL IDENTIFICATION ALGORITHM

For an acoustic system, the output signal is equal to the in-
put signal convolved with the corresponding impulse response
in the time domain. The characteristics of the acoustic channel
impulse response are affected by the shape and size of the room
as well as the reflection intensity of all the boundaries (walls,
floor, ceiling, etc). A room acoustic impulse response may have
a long and heavy tail (corresponding to a room with long rever-
beration time), or a sparse tail (corresponding to a room with
short reverberation time). In the frequency domain, the impulse
responses with different levels of tails exhibit diverse unifor-
mities of amplitude spectra. This section investigates how to
blindly identify the impulse responses of the acoustic channels
by taking into account the sparsity of the impulse responses.

A. An �p -RNMCFLMS Algorithm

The �0-norm is often viewed as an accurate metric to measure
the sparsity. However, the minimization of the corresponding
cost function is non-deterministic polynomial-time (NP)-hard.
To relax the NP-hard problem, the �1-norm is often used, which
may lead to similar performance as the �0-norm [20]. For realis-
tic acoustic channels, however, the �1-norm constraint may not
be optimal in every condition as the sparsity of the room impulse
responses varies significantly from one application to another.
Inspired by the bridge regression theory [21], which introduces
an �p -norm penalty (1 ≤ p < 2) into the least-squares criterion
so as to achieve a compromise between the lasso (p = 1) and
ridge regression (p = 2), we attempt in this work to employ an
�p -norm constraint of acoustic impulse responses and investigate
the effect of different �p -norm penalties on the adaptive filters
for the acoustic channels with different levels of reverberation.
One straightforward way of doing this is through the following
cost function, which is a combination of the cost function de-
fined in (9) and the �p -norm of the estimate of the time-domain
impulse response as follows:

J (m) = JF(m) + η(m)JTP(m) (23)

s.t.
∥

∥̂hhh(m)
∥

∥

2
�2

= 1, (24)
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Fig. 1. Comparison of the p-norm (1 ≤ p < 2) penalty function and logarith-
mic penalty function (δ = 0.01).

where JF(m) is defined in (9), η(m) > 0 is a Lagrange
multiplier,

JTP(m) =
∥

∥̂hhh(m)
∥

∥

p

�p
, (25)

̂hhh(m) =
[

̂hhh
T

1 (m) ̂hhh
T

2 (m) · · · ̂hhhT

M (m)
]T

, (26)

‖ · ‖�p
denotes the �p -norm (1 ≤ p < 2), which is a penalty

constraint, and ‖ · ‖�2 denotes the �2-norm. Equation (24) is
a unit length constraint on the time-domain impulse response
vector to avoid a trivial solution with all zero elements for the
time-domain impulse responses. To simplify, this unit length
constraint is imposed on the time-domain impulse responses of
acoustic channels after each iteration update. Fig. 1 illustrates
the difference between �p -norms of a scalar variable φ with
different values of p. For comparison, we also plot the �2-norm
and logarithmic function. From an optimization point of view,
the penalty function with a small value of p (1 ≤ p < 2) has
lower emphasis on large magnitude and sharper slope near zero
as compared to the case of a large value of p, which can be
clearly seen from Fig. 1. According to the connection between
Bayes estimator and �p (1 ≤ p < 2) penalty [22], this �p penalty
is a generalization of both the lasso (p = 1) and ridge regression
(p = 2). The former corresponds to a Laplacian prior, while the
latter corresponds to a Gaussian prior. Therefore, the �p -norm
(1 ≤ p < 2) can effectively penalize the different sparse levels
of acoustic channels that correspond to different distribution
characteristics, respectively.

While it is straightforward to follow, the cost function defined
in (23) is a mixture of the frequency-domain least-squares error
and the time-domain sparsity penalty, which makes it difficult to
deduce a computationally efficient frequency-domain adaptive
algorithm via Newton’s method. One may consider to deduce an
adaptive algorithm following the gradient descent method; but
the resulting adaptive filter is slow in convergence, particularly
in acoustic applications where the filter length is usually very
long. To circumvent this issue, we adopt an alternative way to

define the cost function, which uses the density of the amplitude
spectrum of the acoustic impulse responses as the penalty term,
i,e.,

˜J (m) = JF(m) − η(m)JFP(m) (27)

s.t.
∥

∥̂hhh(m)
∥

∥

2
�2

= 1, (28)

where

JFP(m) =
∥

∥

∥

̂hhh
10

(m)
∥

∥

∥

p

�p

, (29)

̂hhh
10

(m) =
[

(

̂hhh
10
1 (m)

)T (
̂hhh

10
2 (m)

)T

· · ·
(

̂hhh
10
M (m)

)T
]T

,

(30)

̂hhh
10
k (m) =

[

̂h
10
k,0(m) ̂h

10
k,1(m) · · · ̂h10

k,2L−1(m)
]T

,

k = 1, 2, . . . ,M. (31)

Herein, we impose a penalty on ̂hhh
10

(m) rather than ̂hhh(m). This
is due to the fact that the modeling filter ̂hhhk (m) is padded with
trailing zeros to length 2L, which yields a zoomed spectrum
to alleviate picket fence effect and emphasize more spectral
components of ̂hhhk (m). Comparing (23) and (27), one can see
that minimization of the sparsity penalty in the time domain
is now transformed into maximization of the homogenization
penalty in the frequency domain, which results in the minus sign
in the second term in (27).

Remark 1: It should be pointed out that direct minimization
of (27) may lead to negative infinity due to the minus term on
the right-hand side of (27). To circumvent this issue so as to
effectively optimize the cost function, we apply the following
constraints: 1) the number of microphone channels is finite; 2)
the sum of the square of the coefficients of the acoustic channel
impulse responses is finite, which is true in realistic acoustic
environments; 3) the parameter p is bounded as 1 ≤ p < 2; and
4) η(m) is a finite value, which is adaptively updated so that
during each iteration, the increment of the frequency-domain
adaptive filter coefficient vector is not significant. Under the
above conditions, the adaptive filter can effectively search for
an optimal solution in the constrained solution space.

Remark 2: An alternative scheme to avoid the use of the
minus term on the right-hand side of (27) is to introduce an
�q -norm as the spectral penalty on the acoustic channel impulse
responses, i.e.,

˜J (m) = JF(m) + η(m)JFQ(m), (32)

where

JFQ(m) =
∥

∥

∥

̂hhh
10

(m)
∥

∥

∥

q

�q

, (33)

‖ · ‖�q
denotes the �q -norm, which is defined similarly as the

�p -norm, but the value of q is determined as follows:

1
q

+
1
p

= 1, (34)
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which indicates that

q =
p

p − 1
. (35)

According to (35), one can see that if 1 ≤ p < 2, the value of q
satisfies 2 < q < ∞. Our experimental investigation shows that
the ‖ · ‖q

�q
can help improve the performance of the adaptive

filter in low SNR environments with speech excitation, but it
easily makes the adaptive filter divergent in high SNR condi-
tions. The underlying reason is that in high SNR conditions, the
amplitude spectra of microphone signals are less flat and have
a large dynamic range and so is the error signal. In this case,
large components of the error signal are easily exacerbated by
the �q -norm (2 < q < ∞) penalty, resulting divergence of the
adaptive filter. Therefore, this approach will not be discussed in
detail in this paper.

To deduce the adaptive filtering algorithm, we first express
(10) as the following equivalent equation:

eeeij (m) = GGG
[

DDDi(m)̂hhh
10
j (m) −DDDj (m)̂hhh

10
i (m)

]

, (36)

where

̂hhh
10
j (m) = WWŴhhhj (m). (37)

Unlike the previous NMCFLMS-type algorithms which use the
gradient of the cost function with respect to ̂hhh

∗
k (m), we calcu-

late the gradient of the cost function with respect to
(

̂hhh
10
k (m)

)∗

to derive the adaptive filtering algorithm. The reason is that
by doing so, we can derive the multichannel frequency-domain
adaptive filter to directly obtain a generalized diagonal power
spectrum matrix, which largely reduces the computational com-
plexity of the inversion of this matrix. According to (27), the

gradient of ˜J (m) with respect to
(

̂hhh
10
k (m)

)∗
is written as

∇ ˜J (m) = 2
∂JF(m)

∂
(

̂hhh
10
k (m)

)∗ − 2η(m)
∂JFP(m)

∂
(

̂hhh
10
k (m)

)∗

= 2
k−1
∑

i=1

(GGGDDDi(m))H eeeik (m)

− 2
M
∑

j=k+1

(GGGDDDj (m))H eeekj (m)

− η(m)p
∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

=
M
∑

i=1

DDD∗
i (m)RRReeeik (m)

− η(m)p
∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

,

(38)

where | · |p−1 is carried out in a component-wise way, and

RRR = 2GGGH . (39)

So, we can get the robust multichannel frequency-domain least
mean square (RMCFLMS) algorithm for BMCI as follows:

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μf

M
∑

i=1

DDD∗
i (m)RRReeeik (m)

+ μfη(m)p
∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

,

k = 1, 2, . . . ,M. (40)

As can be seen from (40) that if we omit the third additive term
on the right-hand side of this expression, the update equation
degenerates to that of the multichannel frequency-domain least
mean square (MCFLMS) algorithm [17]. This indicates that the
MCFLMS algorithm can be directly deduced by calculating the
gradient of the cost function in the MCFLMS algorithm with

respect to
(

̂hhh
10
k (m)

)∗
.

To accelerate the convergence of the adaptive filter and di-
minish the gradient noise amplification due to large channel
outputs [17], we herein employ the iteration scheme of New-
ton’s method [17], [18] to update the adaptive filter coefficient
vector. According to Newton’s method, we can write the update
equations of the channel estimates as

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μfSSS−1

k (m)∇ ˜J (m)

k = 1, 2, . . . , M, (41)

where the Hessian matrix SSSk (m) can be derived by

SSSk (m) = 2
∂

∂
(

̂hhh
10
k (m)

)∗ [∇ ˜J (m)]H

= 2

∂

[

M
∑

i=1,i �=k

DDD∗
i (m)RRReeeik (m)

]H

∂
(

̂hhh
10
k (m)

)∗ − 2η(m)p

×
∂

{

∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

}H

∂
(

̂hhh
10
k (m)

)∗ .

(42)

The first partial derivative term in (42) is easily deduced as

∂

[

M
∑

i=1,i �=k

DDD∗
i (m)RRReeeik (m)

]H

∂
(

̂hhh
10
k (m)

)∗

=
M
∑

i=1,i �=k

DDD∗
i (m)GGGHRRRHDDDi(m)

=
M
∑

i=1,i �=k

DDD∗
i (m)RRRGGGDDDi(m)

=
1
2
PPPk (m), (43)



HE et al.: NOISE ROBUST FREQUENCY-DOMAIN ADAPTIVE BLIND MULTICHANNEL IDENTIFICATION 1613

where PPPk (m) is defined in (19), and an approximate
relationship:

RRRGGG ≈ 1
2
III2L (44)

is used if L is large. For the second partial derivative term in
(42), we first write

{

∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

}H

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∣

∣

∣

̂h
10
k,0(m)

∣

∣

∣

p−1
exp
{

− j arg
[

̂h
10
k,0(m)

]}

∣

∣

∣

̂h
10
k,1(m)

∣

∣

∣

p−1
exp
{

− j arg
[

̂h
10
k,1(m)

]}

...
∣

∣

∣

̂h
10
k,2L−1(m)

∣

∣

∣

p−1
exp
{

− j arg
[

̂h
10
k,2L−1(m)

]}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∣

∣
̂h

1 0
k , 0 (m )

∣

∣

p

̂h
1 0
k , 0 (m )

∣

∣
̂h

1 0
k , 1 (m )

∣

∣

p

̂h
1 0
k , 1 (m )

...
∣

∣
̂h

1 0
k , 2 L −1 (m )

∣

∣

p

̂h
1 0
k , 2 L −1 (m )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

. (45)

Since

∂

[
∣

∣
̂h

1 0
k , l (m )

∣

∣

p

̂h
1 0
k , l (m )

]

∂
(

̂h
10
k,l(m)

)∗ = ̂h
10
k,l(m)

p
∣

∣

∣

̂h
10
k,l(m)

∣

∣

∣

p−1

(

̂h
10
k,l(m)

)2

̂h
10
k,l(m)

2
∣

∣

∣

̂h
10
k,l(m)

∣

∣

∣

=
p
∣

∣

∣

̂h
10
k,l(m)

∣

∣

∣

p−2

2
, l = 0, 1, . . . , 2L − 1, (46)

then

∂

∂
(

̂hhh
10
k (m)

)∗

{

∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

}H

= diag

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

p
∣

∣
̂h

1 0
k , 0 (m )

∣

∣

p −2

2

p
∣

∣
̂h

1 0
k , 1 (m )

∣

∣

p −2

2

...

p
∣

∣
̂h

1 0
k , 2 L −1 (m )

∣

∣

p −2

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (47)

So, the Hessian matrix SSSk (m) is obtained as follows:

SSSk (m) = PPPk (m) − η(m)p2HHHk (m), (48)

where

HHHk (m) = diag

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∣

∣

∣

̂h
10
k,0(m)

∣

∣

∣

p−2

∣

∣

∣

̂h
10
k,1(m)

∣

∣

∣

p−2

...
∣

∣

∣

̂h
10
k,2L−1(m)

∣

∣

∣

p−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (49)

As can be seen, SSSk (m) in (48) is a diagonal matrix, so its
inversion can be computed efficiently. As compared to the power
spectrum matrix PPPk (m) of the NMCFLMS-type algorithms,
the matrix SSSk (m) is adjusted by a weighted spectrum of the
acoustic channel impulse responses. Thus, we can define this
Hessian matrixSSSk (m) as a generalized power spectrum matrix.

Now, substituting (38) and (48) into (41) produces the up-
date equations of the proposed �p -RNMCFLMS algorithm as
follows:

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μf

[PPPk (m) − η(m)p2HHHk (m)
]−1

×
{

M
∑

i=1

DDD∗
i (m)RRReeeik (m) − η(m)

× p
∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1
� exp

{

j arg
[

̂hhh
10
k (m)

]}

}

,

k = 1, 2, . . . ,M. (50)

Comparing the update equations of RNMCFLMS [18], [19]
with those of the proposed �p -RNMCFLMS algorithm, one can
see that the RNMCFLMS algorithm is an approximate solu-
tion without detailed derivation while the �p -RNMCFLMS al-
gorithm is rigorously derived upon the basis of the robust cost
function and Newton’s method. Also, (50) can be formulated as
a simplified version as follows:

̂hhh
10
k (m + 1) = ̂hhh

10
k (m) − μf∇JF ,k (m) + μfη(m)∇JFP ,k (m),

k = 1, 2, . . . ,M, (51)

where

∇JF ,k (m) = SSS−1
k (m)

M
∑

i=1

DDD∗
i (m)RRReeeik (m), (52)

∇JFP ,k (m) = pSSS−1
k (m)

∣

∣

∣

̂hhh
10
k (m)

∣

∣

∣

p−1

� exp
{

jarg
[

̂hhh
10
k (m)

]}

, (53)

η(m) =

∣

∣

∣

∣

∣

[∇JFP(m)]H ∇JF(m)
‖∇JFP(m)‖2

�2

∣

∣

∣

∣

∣

, (54)

∇JFP(m) =
[

(∇JFP ,1(m))T (∇JFP ,2(m))T

· · · (∇JFP ,M (m))T

]T

, (55)
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Fig. 2. Effect of different norm penalties on the optimization of the cost
function ˜J (m), where the concentric ellipses denote the contours of the error
curved surface corresponding to JF (m), the black circle with the radius of

√
C

stands for the �2 -norm constraint of the amplitude spectrum of the adaptive filter
coefficient vector in (59), the diamond in (a) depicts the �1 -norm penalty, the
rounded and curved diamond in (b) denotes the �p -norm (1 < p < 2) penalty,
and the circle in (c) stands for the �2 -norm penalty (overlapped with the black
circle that depicts unit length constraint).

∇JF(m) =
[

(∇JF ,1(m))T (∇JF ,2(m))T

· · · (∇JF ,M (m))T

]T

. (56)

The Lagrange multiplier η(m) in (54) is calculated in such a way
that the total update vector is not significant to cause divergence.
Note that this multiplier in SSSk (m) is adjusted as η(m − 1) to
calculate η(m) in (54).

Finally, the estimated time-domain adaptive filter coefficient
vector ̂hhh (m + 1) is imposed to have a unit length for each
update, i.e.,

̂hhh(m + 1) :=
̂hhh(m + 1)
∥

∥̂hhh(m + 1)
∥

∥

�2

. (57)

B. Effect of Different Norm Penalties on the Optimization of
the Frequency-Domain Adaptive Filter

The optimization on the �1-norm as a penalty of the cost
function can be intuitively interpreted according to Fig. 2 where
we only consider the case of two dimensions. As can be seen
from Fig. 2(a), under the constraints of both the �2-norm and the
�1-norm of the amplitude spectrum of the adaptive filter coeffi-
cient vector, it is easy for the frequency-domain adaptive filter
to search for a dense solution in which all of elements of the
frequency-domain adaptive filter coefficient vector are equal or
close, especially for a perfectly homogeneous amplitude spec-
trum, i.e., anechoic channels.

To analyze the effect of the �p -norm (1 < p < 2) penalty
on the frequency-domain adaptive filter, we first introduce a
proposition. For convenience, we define a vector:

γγγ(m) = [γ1(m) γ2(m) · · · γ2M L (m)]T

=
[

∣

∣

∣

̂h
10
1,0(m)

∣

∣

∣

∣

∣

∣

̂h
10
1,1(m)

∣

∣

∣ · · ·
∣

∣

∣

̂h
10
1,2L−1(m)

∣

∣

∣

∣

∣

∣

̂h
10
2,0(m)

∣

∣

∣

∣

∣

∣

̂h
10
2,1(m)

∣

∣

∣ · · ·
∣

∣

∣

̂h
10
2,2L−1(m)

∣

∣

∣ · · ·
∣

∣

∣

̂h
10
M,0(m)

∣

∣

∣

∣

∣

∣

̂h
10
M,1(m)

∣

∣

∣ · · ·
∣

∣

∣

̂h
10
M,2L−1(m)

∣

∣

∣

]T

, (58)

which indicates γi(m) ≥ 0, i = 1, 2, . . . , 2ML. Then, the
proposition is given as follows:

Proposition 1: According to the assumption that the impulse
response vectors of the M acoustic channels are of a unit length,
the square length of their amplitude spectra coefficients can be
added up to a constant, i.e.,

γ2
1 (m) + γ2

2 (m) + · · · + γ2
2M L (m) = C, (59)

where C is a constant. Then,

JFP(m) = γp
1 (m) + γp

2 (m) + · · · + γp
2M L (m) (60)

takes the maximum value of 2ML
(

C
2M L

)
p
2 when γi(m) =

√

C
2M L , i = 1, 2, . . . , 2ML.
Proof: This proposition can be formulated as a constrained

optimization problem as follows:

max JFP(m) = γp
1 (m) + γp

2 (m) + · · · + γp
2M L (m) (61)

s.t. γ2
1 (m) + γ2

2 (m) + · · · + γ2
2M L (m) = C. (62)

Using the method of Lagrangian multipliers [23] to solve the
constrained optimization problem, we rewrite the Lagrangian
function of (61) and (62) as

L[γi(m), λ] = γp
1 (m) + γp

2 (m) + · · · + γp
2M L (m)

+ λ
[

γ2
1 (m) + γ2

2 (m) + · · · + γ2
2M L (m) − C

]

,
(63)

where λ is the Lagrangian multiplier. Let the partial derivative
of L[γi(m), λ] with respect to γi(m), i = 1, 2, . . . , 2ML, be
equal to zero, i.e.,

∂L[γi(m), λ]
∂γi(m)

= pγp−1
i (m) + 2λγi(m)

= γp−1
i (m)

[

p + 2λγ2−p
i (m)

]

= 0. (64)

Since the solution is assumed to be nontrivial, it follows imme-
diately that

γi(m) =
(−p

2λ

) 1
2−p

, i = 1, 2, . . . , 2ML. (65)

Substituting (65) into (62) and with some simple mathematical
manipulations, we obtain

λ = −p

2

(

C

2ML

)− 2−p
2

. (66)

Substituting (66) into (65), we get

γi(m) =

√

C

2ML
, i = 1, 2, . . . , 2ML. (67)

Consequently, JFP(m) in (61) obtains the maximum value:

JFP(m) = 2MLγp
i (m)

= C
p
2 (2ML)1− p

2

= 2ML

(

C

2ML

)
p
2

. (68)
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Note that the impulse responses of all the M channels are the
unit impulse responses when (67) holds.

Furthermore, according to the property of the Fourier ma-
trix FFFH

L FFFL = LIIIL and the constraint of the unit length of the
channel time-domain impulse responses, we deduce that

2M L
∑

k=1

γ2
k (m) =

M
∑

k=1

∥

∥

∥

̂hhh
10
k (m)

∥

∥

∥

2

�2

=
M
∑

k=1

(

̂hhh
10
k (m)

)T

FFFH
2LFFF2L

̂hhh
10
k (m)

= 2L

M
∑

k=1

̂hhh
T

k (m)̂hhhk (m)

= 2L, (69)

which indicates that the constant C = 2L. This completes the
proof. �

The effect of the �p -norm (1 < p < 2) penalty on the op-
timization of the cost function ˜J (m) can be illustrated by
Fig. 2(b). As can be seen, under the condition of γi(m) =
√

C
2M L , i = 1, 2, . . . , 2ML, the frequency-domain adaptive fil-

ter indeed can obtain a dense solution. For the acoustic channels
with moderate dense spectra, such as moderate reverberation
channels, however, the �1-norm and �p -norm penalties cannot
yield an optimal solution according to Fig. 2(a) and (b). In this
case, the �p -norm penalty is easier to lead to an approximate so-
lution than the �1-norm penalty. It can be further seen from (68)
that as the value of the parameter p (1 ≤ p < 2) is increased,
the maximum value of the penalty function JFP(m) decreases
[note that the constant C = 2L according to (69)], which makes
the minimum value of the total cost function ˜J (m) larger. So,
the larger is the value of the parameter p, the worse is the
convergence performance for this type of sparse acoustic chan-
nels. For realistic reverberant acoustic channels, however, the
amplitude spectra of the impulse responses are not flat. The
penalty function JFP(m) does not, in general, converge to
the maximum value in (68) but to a suboptimal value during
the course of optimization. Thus, the corresponding convergence
rate slows down. Note that if p = 2, the developed frequency-
domain adaptive filter can no longer identify the dense acoustic
channels, which can be seen from Fig. 2(c).

IV. SIMULATIONS

This section investigates and compares the performances
of the NMCFLMS, RNMCFLMS, and developed �p -
RNMCFLMS algorithms in a simulated room with the
dimension of 7.0 m × 6.0 m × 3.0 m. For convenience,
positions in the room are designated by (x, y, z) coordinates
with reference to the northwest corner of the floor. An
equispaced linear array which consists of three omnidirectional
microphones is employed in the measurement and the spacing
between adjacent microphones is 0.5 m. The three microphones
of the array are placed at (3.0, 0.5, 1.4), (3.5, 0.5, 1.4), and (4.0,

0.5, 1.4), respectively. A loudspeaker, which serves as a sound
source, is placed at (0.5, 4.0, 1.6).

The impulse responses from the source to the three micro-
phones are generated using the image model [24], where the
sampling rate is set to 16 kHz. Then the obtained channel im-
pulse responses are truncated to 1024 samples, which will be
viewed as the true impulse responses in the blind multichan-
nel identification. The microphones’ outputs are obtained by
convolving the source signal with the corresponding generated
impulse responses and then adding zero-mean white Gaussian
noise to the results to control the SNR. The sound source signal is
a white Gaussian sequence, which is approximately 4.7-minute
long.

Four reverberation conditions with different values of rever-
beration time T60 (defined as the time for the sound to die
away to a level 60 dB below its original level) are consid-
ered to test the performance of the three frequency-domain
adaptive filters, i.e., anechoic (T60 = 0 ms), lightly reverber-
ant (T60 = 50 ms), moderately reverberant (T60 = 300 ms), and
random (T60 → ∞) channels. The amplitude spectra of the first-
channel impulse response for the four acoustic environments are
plotted in Fig. 3(a)–(d) for illustration. For the three algorithms,
the step size μF is set to 0.1 for the anechoic and light rever-
beration environments, and 0.5 for the moderate reverberation
condition and the case of T60 → ∞. We use the normalized
projection misalignment (NPM) [25] as the metric to evaluate
the BMCI performance. The NPM at block m is defined as

NPM(m) = 20 log10

[‖εεε(m)‖�2

‖hhh‖�2

]

dB, (70)

where

hhh =
[

hhhT
1 hhhT

2 · · · hhhT
M

]T
(71)

consists of the true impulse responses,

εεε(m) = hhh − hhhT ̂hhh(m)
̂hhh

T
(m)̂hhh(m)

̂hhh(m) (72)

is the projection misalignment vector. All the results are aver-
aged over 100 Monte Carlo runs.

Fig. 4 depicts the convergence behavior of the three stud-
ied algorithms for the identification of acoustic channels with
L = 1024 in the four reverberation conditions at the SNR of
5 dB, where the acoustic system is excited by a white Gaussian
sequence. It can be seen from Fig. 4 that the NMCFLMS algo-
rithm diverges in all the four acoustic environments due to the
presence of noise, which indicates that this algorithm is sensitive
to noise. In the anechoic environment, one can see from Fig. 4(a)
that the RNMCFLMS and �p -RNMCFLMS algorithms are con-
vergent. The smaller is the value of the parameter p, the smaller
is the NPM of the �p -RNMCFLMS algorithm, which demon-
strates the analysis of Proposition 1. Meanwhile, the NPM for
the RNMCFLMS algorithm is the least in the anechoic acoustic
environment. The underlying reason for this is that the acous-
tic impulse responses in this environment are sparsest and the
spectra of the channels are flat. In this scenario, the logarith-
mic penalty function is closer to the �0-norm, which is better to



1616 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2018

Fig. 3. Amplitude spectra of the impulse responses for the acoustic chan-
nel with different reverberation times. (a) Anechoic channel (T60 = 0 ms).
(b) Light reverberation channel (T60 = 50 ms). (c) Moderate reverberation
channel (T60 = 300 ms). (d) Random acoustic channel (T60 → ∞).

measure the sparsity of this type of channel impulse responses.
Therefore, the frequency-domain adaptive filter with the loga-
rithmic penalty is better than that with the �p -norm (1 ≤ p < 2)
penalty to blindly identify the impulse responses.

When there exists reverberation, the acoustic channel im-
pulse responses become less sparse, which makes the logarith-
mic penalty function no longer optimal. It can be seen from
Fig. 4(b)–(d) that the �p -RNMCFLMS algorithm obtains better
performance than the RNMCFLMS algorithm, indicating that
the penalty with �p -norm (p = 1.0, 1.3, 1.6) is better than the
logarithmic penalty under reverberation environments. We can
see from Fig. 4(b) that in a light reverberation environment,

Fig. 4. Comparison of convergence among the NMCFLMS, RNMCFLMS
(with logarithmic penalty), and �p -RNMCFLMS algorithms for the identifica-
tion of a three-channel system excited by a white Gaussian sequence at the
SNR of 5 dB. (a) Anechoic channel (T60 = 0 ms). (b) Light reverberation
channel (T60 = 50 ms). (c) Moderate reverberation channel (T60 = 300 ms).
(d) Random acoustic channel (T60 → ∞).

the adaptive filter with the three different �p -norm penalties
(p = 1.0, 1.3, 1.6) has similar convergence behavior. As the re-
verberation of this room is increased, the penalty with greater
parameter p results in a better convergence and a smaller NPM,
as shown in Fig. 4(c) and (d). This demonstrates that the penalty
with a greater value of p is favorable for the identification of
the acoustic channels with heavier reverberation. We can also
see from Fig. 4 that stronger reverberation makes the identi-
fication of acoustic channels more difficult, especially for the
random channels with T60 → ∞. Note that for the proposed
�p -RNMCFLMS algorithm, the optimal value of p varies with
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reverberation and how to find the optimal value given an acoustic
environment is a problem worthy of further investigation.

In this section, the spacing between microphones is 50 cm.
Note that the spacing between microphones may significantly
affect the performance of BMCI. Generally, a smaller spacing
between microphones increases the difficulty of blindly identi-
fying the system since there is less diversity between different
channels and common zeros are more likely to happen.

V. EXPERIMENTS

In this section, we validate the effectiveness of the �p -
RNMCFLMS algorithm in a real acoustic environment where
the channel impulse responses were measured at the Bell Labs
varechoic chamber [26]. The dimension of the chamber is 6.7 m
× 6.1 m× 2.9 m. An equispaced linear array which is composed
of three omnidirectional microphones is used in the measure-
ment, which are placed at (2.437, 0.500, 1.400), (3.137, 0.500,
1.400), and (3.837, 0.500, 1.400), respectively. A loudspeaker
is placed at (0.337, 3.938, 1.600), which plays back a sound sig-
nal to simulate a source. The transfer functions of the acoustic
channels between the source and microphones were measured
at a 48 kHz sampling rate when 89% panels on the walls were
open and the corresponding reverberation time of the chamber is
approximately 280 ms [26]. Then the obtained channel impulse
responses are downsampled to a 16 kHz sampling rate and trun-
cated to 1024 samples. The measured impulse responses will be
treated as the true impulse responses in BMCI.

We consider two cases: 1) the sound source signal is a white
Gaussian sequence and 2) the source signal is a recorded speech
signal sampled at 16 kHz. The length of the two source signals is
also approximately 4.7-minute long. The multichannel system
outputs are generated by convolving the sound source signal
with the corresponding measured channel impulse responses
and zero-mean white Gaussian noise is then added to the results
at a given level of SNR. The step size μf is set to 0.5. All the
results are averaged over 100 estimates.

Fig. 5 plots the average NPM of the three algorithms versus
SNR for the acoustic channel identification of the three-channel
system with L = 1024, where the acoustic system is excited
by a white Gaussian sequence. It can be seen that the NM-
CFLMS algorithm is most susceptible to noise. The introduc-
tion of the logarithmic penalty into NMCFLMS improves its
robustness to noise due to the constraint on the spectral flatness.
In comparison, the �p -RNMCFLMS algorithm with the p-norm
(1 ≤ p < 2) penalty obtains the best performance in most of
the studied conditions when SNR is low. Again, this shows that
the �p -norm (1 ≤ p < 2) penalty is more appropriate than the
logarithmic penalty to help robustness improvement of BMCI
to noise. When SNR is high, however, the two algorithms with
sparsity constraints do not produce better robustness than NM-
CFLMS. As SNR is increased, the performance of all the three
algorithms tends to be similar. This is due to the following two
aspects: 1) they all have the common part in the total cost func-
tion, i.e.,JF(m), and 2) when SNR is high, the effect of the even
spectrum of white noise on the modeling filter is so negligible

Fig. 5. Comparison of the NPM among the NMCFLMS, RNMCFLMS (with
logarithmic penalty), and �p -RNMCFLMS algorithms versus SNR for the
identification of a three-channel acoustic system excited by a white Gaussian
sequence.

Fig. 6. Comparison of the NPM among the NMCFLMS, RNMCFLMS (with
logarithmic penalty), and �p -RNMCFLMS algorithms versus SNR for the iden-
tification of a three-channel acoustic system excited by a speech signal.

that the a priori error eij (n) mainly comes from a modeling er-
ror, which indicates that this filter is basically of sparsity during
the course of adaptive optimization.

Fig. 6 illustrates the NPM of the three algorithms versus SNR
for the acoustic channel identification with speech excitation.
All the parameters are set to the same as in the previous experi-
ment. Comparing the results to those of the previous experiment,
one can see that the performance of all the frequency-domain
adaptive filtering algorithms degradates when the excitation
is speech. Again, the NMCFLMS algorithm is most sensitive
to noise. The RNMCFLMS algorithm uses the logarithmic
penalty to enhance its immunity to noise. In comparison with
RNMCFLMS, the �p -RNMCFLMS algorithm exhibits better
performance when SNR is low. One can notice from Fig. 6
that a large value of p can help improve the robustness of the
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�p -RNMCFLMS algorithm with respect to noise, i.e., its per-
formance is better for a large value of p when SNR is low. The
underlying reason is as follows. As mentioned in [22], the �p -
norm (1 ≤ p < 2) is an approximation to the elastic net function,
which is a convex combination of the lasso (corresponding to the
�1-norm) and ridge (corresponding to the �2-norm) penalty. For
a Laplace distributed acoustic channel, the �1-norm penalty is a
good candidate, but for a Gaussian distributed acoustic channel,
the �2-norm penalty provides a stable solution. When SNR is
low (e.g., SNR < 10 dB), the microphone signal is closer to
Gaussian distribution than Laplace distribution. In this case, the
�p -norm penalty with a relatively large value of p is preferable.
In comparison, when SNR is high (e.g., SNR ≥ 20 dB), the
probability distribution of the multichannel system output gets
close to that of the speech source signal. A greater value of p
generally makes the �p -RNMCFLMS algorithm more sensitive
to adverse effect of speech nonstationarity and non-Gaussianity,
which corroborates the observation from [27]. Therefore, con-
sidering performance consistency in both high and low SNR
environments, we suggest to set the value of p not too large.

VI. CONCLUSION

In this paper, an �p -RNMCFLMS algorithm was developed
to blindly identify the acoustic impulse responses of an acoustic
SIMO system in noisy environments. This algorithm exploits
the �p -norm with 1 ≤ p < 2 as a spectral penalty on the acous-
tic channel impulse responses to improve its robustness to noise.
The property of this algorithm is analyzed both theoretically and
experimentally and its performance depends on both the sparse-
ness of the acoustic impulse responses as well as the nature of the
source excitation. Basically, the algorithm emphasizes more on
the sparseness of the acoustic impulse responses with a smaller
value of p. If the excitation is white, a large value of p makes the
algorithm more robust to noise. In practical acoustic environ-
ments with speech excitation, however, the performance varies
with the value of p. Generally, a large value of p is preferred
at low SNR conditions while a small value of p is preferred if
SNR is high. In future work, we will investigate how different
�p -norm penalties affect the performance of the adaptive filter
for the identification of the acoustic channels in reverberant and
non-Gaussian noise environments.
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